LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 **B.Com.** DEGREE EXAMINATION – **COMMERCE – ALLIED** THIRD SEMESTER - NOVEMBER 2022 17/18UMT3AL01 – BUSINESS MATHEMATICAL TECHNIQUE Date: 01-12-2022 Dept. No. Max.: 100 Marks Time: 09:00 AM - 12:00 NOON Part – A **Answer ALL the Questions** $(10 \times 2 = 20)$ 1. If $u(x, y) = 4x^2 + 9xy - 5y^2$, then find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$. 2. If $y = 3 \sin x + 5 \cos x$ find $\frac{d^2 y}{dx^2}$ State any two properties of definite integrals. 3. Evaluate $\int (6x^2 + 7) dx$ 4. Define an optimal solution of linear programming problem. 5. 6. Write the dual of the following LPP Max $Z = x_1 - x_2 + 3x_3$ Subject to constraints: $x_1 + x_2 + x_3 \le 10$ $2x_1 - x_2 - x_3 \le 2$ $2x_1 - 2x_2 - 3x_3 \le 6$ where $x_1, x_2, x_3 \ge 0$ 7. Define transportation problem. State any applications of assignment problem. 8. 9. Define critical path. 10. What is a project in network analysis? Part – B **Answer any FIVE Questions** $(5 \times 8 = 40)$ 11. If $y = (x + \sqrt{1 + x^2})^m$ show that $(1 + x^2)y_2 + xy_1 = m^2y_2$. 12. Integrate $\int \frac{x+5}{(x+1)(x+3)} dx$.

- 13. Find the maxima and minima of the function $2x^3 3x^2 + 6$.
- 14. Find consumer and producer surplus for $y = 16 x^2$ and $y = 4 + 2x^2$.

15. Solve the following LPP by graphical method.

Maximize $z = 5x_1 + 8x_2$

Subject to the constraints: $15x_1 + 10x_2 \le 180$,

$$10x_1 + 20x_2 \le 200,$$

- $15x_1 + 20x_2 \le 210$ where $x_1, x_2 \ge 0$.
- 16. Consider the problem of assigning four jobs to four persons. The assignment costs are given as follows

	Persons	Ι	II	III	IV
	А	5	7	11	6
Jobs	В	8	5	9	6
	С	4	7	10	7
	D	10	4	8	3

Determine the optimum assignment schedule.

- 17. Find the initial basic feasible solution to the following transportation problem by
 - (i) Vogel's approximation method (ii) Least cost method.

1	2	1	15	30
3	3	2	1	50
15	2	5	9	20
1020	40	30	10	I

18. Draw the network for the following:

Activity	А	В	С	D	E	F	G	Η	Ι
Immediate Predecessor	-	А	А	-	D	B,C,E	F	Е	G,H

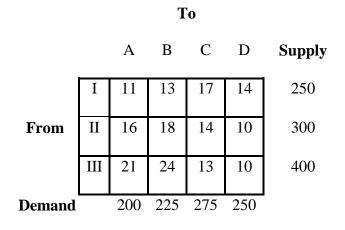
<u>Part - C</u>

Answer any TWO Questions

 $(2 \times 20 = 40)$

19. a) The total cost function of a firm is given by $C = \frac{1}{3}q^3 - 10q^2 + 300q$. Find

(i) Output at which, Average cost is minimum.


(ii) Output at which, Marginal cost is minimum.

(iii) Output at which, Average cost is equal to Marginal cost.

b) Find
$$\frac{dy}{dx}$$
, if $y = x^{x}$. (12+8)

20. Obtain the optimum transportation cost using MODI method with the initial basic feasible solution

obtained using North west corner method.

21. Solve the following LPP by simplex method.

Maximize $z = 4x_1 + 10x_2$

Subject to the constraints,

 $2x_1 + x_2 \le 50,$ $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90,$

$$x_1, x_2 \ge 0.$$

22. Find the critical path and the project duration for the following:

Activity	Least time (days)			
1 - 2	8			
1 – 3	4			
2 - 4	10			
2-5	2			
3-4	5			
4-5	3			

@@@@@@@@